import mmcv from mmcv.runner import load_checkpoint from mmdet.models import build_detector from mmdet.apis import inference_detector, show_result from tqdm import tqdm import os import json
# construct the model and load checkpoint model = build_detector(cfg.model, test_cfg=cfg.test_cfg) _ = load_checkpoint(model, '/root/code/faster_rcnn_r101_fpn_1x_20181129-d1468807.pth')
image_list = os.listdir('/root/images') # test a single image for name in tqdm(image_list): ifnot name.endswith('.jpg'): continue img = mmcv.imread('/root/images/%s' % name) result = inference_detector(model, img, cfg) rl = [] for r in result: if r.shape[0] > 0: for x in r: rl.append(x.tolist()) with open('/root/features/%s.boxs' % name.split('.')[0], 'w') as f: f.write(json.dumps(rl))
启动 docker 容器
1 2
docker pull vistart/mmdetection:v0.6.0 docker run --gpus all -v /home/sxw/jupyter_workspace/Data/sarcasm/dataset_image/:/root/images:ro -v /tmp/sarcasm_image2:/root/features -v /home/sxw/jupyter_workspace/mutil-model/mycode:/root/code:ro --rm -it vistart/mmdetection:v0.6.0 /bin/bash